S=-16t^2+30+7

Simple and best practice solution for S=-16t^2+30+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for S=-16t^2+30+7 equation:



=-16S^2+30+7
We move all terms to the left:
-(-16S^2+30+7)=0
We get rid of parentheses
16S^2-30-7=0
We add all the numbers together, and all the variables
16S^2-37=0
a = 16; b = 0; c = -37;
Δ = b2-4ac
Δ = 02-4·16·(-37)
Δ = 2368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2368}=\sqrt{64*37}=\sqrt{64}*\sqrt{37}=8\sqrt{37}$
$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{37}}{2*16}=\frac{0-8\sqrt{37}}{32} =-\frac{8\sqrt{37}}{32} =-\frac{\sqrt{37}}{4} $
$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{37}}{2*16}=\frac{0+8\sqrt{37}}{32} =\frac{8\sqrt{37}}{32} =\frac{\sqrt{37}}{4} $

See similar equations:

| -9q-10=-8q | | 126=12(7k-11) | | -58=-2q | | 2x+1+5x+9=24 | | 8k-8=3-14 | | 4u-6=3u+4 | | x+(x/8)=180 | | 5(4+6x)=36+28x | | -3x-26=-8x+54 | | 15+6x=60 | | 11x-18=3x+16=90 | | −5−5(6x−8)=−5x+19 | | 3x+50=x+72 | | 11x-18=3x+16=360 | | d÷9=4/7 | | 57-7x=11-x | | -5G+20=2g-1 | | 6k=32 | | 9x-37=-3x+71 | | 20c+90=16c+94 | | 2x=108518.4 | | 3x+6°=7x+4° | | x^2-21x-320=0 | | 6k+3=75 | | 13v=6v+28 | | 56x=4 | | 16-2u-4/3u=18 | | 11-x=7x-57 | | h5+ 21=27 | | x^2=174 | | 2w-2=-w+10 | | d÷ 9=4.7 |

Equations solver categories